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Landau damping and coherent structures in narrow-banded 1¿1 deep water gravity waves
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We study the modulational instability in surface gravity waves with random phase spectra. Starting from the
nonlinear Schro¨dinger equation and using the Wigner-Moyal transform, we study the stability of the narrow-
banded approximation of a typical wind-wave spectrum, i.e., the JONSWAP spectrum. By performing numeri-
cal simulations of the nonlinear Schro¨dinger equation we show that in the unstable regime, the nonlinear stage
of the modulational instability is responsible for the formation of coherent structures. Furthermore, a Landau-
type damping, due to the incoherence of the waves, whose role is to provide a stabilizing effect against the
modulational instability, is both analytically and numerically discussed.
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I. INTRODUCTION

In many different fields of nonlinear physics, local no
linear effects such as the modulational instability~MI ! have
played a very important role@1#. In plasmas, in the large
amplitude regime a nonlinear coupling between hig
frequency Langmuir and low-frequency ion-acoustic wav
takes place@2#. Under suitable physical conditions, the d
namics can be described by a nonlinear Schro¨dinger ~NLS!
equation and the modulational instability~MI ! can be ana-
lyzed directly with this equation@3#. In nonlinear optics, the
propagation of large amplitude electromagnetic waves p
duces a modification of the refractive index which, in tu
affects the propagation itself and makes possible the for
tion of wave envelopes. In the slowly varying amplitude a
proximation, this propagation is governed again by suita
NLS equations@4# and the MI plays a very important rol
@5#. The charged-particle beam dynamics in high-energy
cular accelerating machines has been suitably describe
terms of NLS for a complex wave function whose squa
modulus is proportional to the beam density@6#. In this con-
text, the so-called ‘‘coherent instability’’ due to the collectiv
interaction of the beam with the surroundings@7#, has been
recently interpreted as the MI of the NLS equation@6#.

For ocean gravity waves, the subject of this paper, the
~also known as the Benjamin-Feir instability! has been dis-
covered independently by Benjamin and Feir@8# and by Za-
kharov@9# in the 1960s. The instability predicts that in de
water a monochromatic wave is unstable under suita
small perturbations. This instability is well described by t
NLS equation and has been recently addressed as respon
for the formation of freak waves@10–13#.

While the role of the modulational instability for a mono
chromatic wave has been widely studied, its role in a c
tinuous wave spectrum characterized by random phases
deserved less attention. In order to approach statistically,
nonlinear energy transfer processes involved, one is in
ested in finding a suitablekinetic equation. As far as ocean
waves are concerned, this kinetic equation has been der
independently by Hasselmann@14,15# and by Zakharov
@9,16#. Besides the quasi-Gaussian approximation@17#, one
1063-651X/2003/67~4!/046305~6!/$20.00 67 0463
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of the major hypothesis required to derive the kinetic eq
tion is that of homogeneity, i.e.,̂A(k)A* (k8)&5n(k)d(k
2k8), whereA is a complex wave amplitude describing th
envelope of the wave train,k andk8 are wave numbers,n(k)
is the spectral density function, and brackets indicate
semble averages. According to the kinetic equation, the
ergy is transferred in an irreversible manner only when fo
waves interact resonantly. Unfortunately, the Hasselma
Zakharov theory is not able to predict the modulational
stability because the latter results from a correlation betw
the carrier wave and the sideband perturbations and, m
over, it is not the result of an exact resonance. Neverthel
if the hypothesis of homogeneity of the system is relax
~correlation between different wave numbers is allowed!, an
improved kinetic equation can be derived which is able
show a random version of the Benjamin-Feir instability. F
surface gravity waves, this improvement is contained in
pioneering work by Alber@18#, followed by the works of
Crawford et al. @19# and Janssen@20–22#. Independent of
these works@18–20#, a similar approach has been develop
for the large-amplitude electromagnetic wave-envelo
propagation in nonlinear media@24#, for the quantumlike de-
scription of the longitudinal charged-particle beam dynam
in high-energy accelerating machines@25# and for the reso-
nant interaction between an instantaneously produced dis
bance and a partially incoherent Langmuir wave@26#. In all
the above approaches, the basic idea is to transit from
configuration space, where the NLS equation governs
wave-envelope propagation, to the phase space, wher
appropriate kinetic equation is able to show a random v
sion of the MI. This has been done by using the mathem
cal tool provided by the Wigner-Moyal transform@27#. Con-
senquently, the governing kinetic equation is nothing bu
von Neumann-Weyl-like equation@28#.

In this paper, we outline the approach formulated in Re
@18–20# and discuss the modulational instability for rando
wave spectra. In particular, we identify the values of t
parameters of the JONSWAP spectrum~see, for example,
Ref. @14#! for which the spectrum itself is unstable. Furthe
more, within the framework of the theory developed in Re
@18–20#, we show that a phenomenon similar to the Land
©2003 The American Physical Society05-1
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damping @29# can be predicted for ocean gravity wav
whose role is to provide a stabilizing mechanism against
MI. In particular, we show, both analytically and nume
cally, that this phenomenon is due to the incoherence of
background solution~random wave spectra!. By performing
numerical simulations of the NLS equation, we show tha
the unstable regime coherent structures naturally appea
the space-time plane. We stress that our focus herein is n
attempt to model ocean waves but instead to study lea
order effects using the simplest weakly nonlinear and disp
sive model in deep water, i.e., the NLS equation. The res
obtained are very similar to the ones recently given in
literature that have shown the existence of a Landau-t
damping in the dynamics of small perturbations on a p
tially incoherent background, consisting of a constant am
tude and a stochastically varying phase, in nonlinear op
@24#, in charged-particle beam dynamics@25# and plasma
physics@26#.

II. STATISTICAL DESCRIPTION OF THE NLS EQUATION
FOR WATER WAVES

The NLS equation for water waves in infinite depth w
derived under the hypothesis of small steepness and nar
banded spectra for the first time by Zakharov in 1968@9#.
While this equation is not appropriate for describing the d
namics in the tail of the spectrum or in the inertial ran
~exact four-wave resonant interactions are forbidden!, it
should describe with satisfactory accuracy the dynam
around the spectral peak. In dimensional form, in a frame
reference moving with the group velocity, the equation re

]A

]t
1 im

]2A

]x2
1 inuAu2A50, ~1!

where in deep waterm5v0/8k0
2 andn5v0k0

2/2 with v0 the
carrier angular frequency andk0 the respective wave num
ber. The free surface elevationz(x,t) is related to the com-
plex envelopeA(x,t) in the following way:

z~x,t !5Re@A~x,t !ei (k0x2v0t)#. ~2!

Equation~1! is the starting point for deriving the require
kinetic equation. Following Alber@18#, the Wigner-Moyal
transform@27# can be applied directly to the NLS equatio
This transform allows one to give a representation of a fu
tion A(x,t) both in configurationx and in wave numberk
space:

n~x,k,t !5
1

2pE2`

1`

^A* ~x1y/2,t !A~x2y/2,t !&e2 ikydy.

~3!

n(x,k,t) is a second-order correlator. In order to derive
evolution equation forn(x,k,t), we take the time-derivative
of Eq. ~3! and use the NLS equation to remove the tim
derivative of the complex envelopeA in the right-hand side
of Eq. ~3!. The nonlinear term in NLS will generate a fourth
order correlator@a term of the form^A1A1* A1A2* & where
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A15A(x1y/2) andA25A(x2y/2)], therefore, a new vari-
able is introduced. In order to proceed in the calculation
closure that relates fourth- and second-order correla
must be introduced. This closure is achieved by int
ducing the quasi-Gaussian approximation^A1A1* A1A2* &
52^A1A2* &^A1A1* &. The fourth-order correlator can be sp
as the product of the sum of second-order correlators,
carding the fourth-order cumulants. This procedure is w
known for the statistical description of water waves@16# and
of many other fields such as plasma physics@30#. The result-
ing kinetic equation is the following von Neumann-Wey
like equation:

]n~x,k,t !

]t
12mk

]n~x,k,t !

]x
14n (

m50

`
~21!m

~2m11!!22m11

3
]2m11^uA~x,t !u2&

]x2m11

]2m11n~x,k,t !

]k2m11
50, ~4!

with

^uA~x,t !u2&5E
2`

1`

n~x,k,t !dk. ~5!

If only the first term in the infinite sum is considered, th
equation reduces to the Vlasov-Poisson equation in pla
physics that is well known to describe the Landau damp
phenomenon@29#. This damping is due to the interactions
resonant electrons of the system; the theory predicts tha
rate of decay of the wave energy is proportional to the fi
derivative of the equilibrium distribution function of th
electrons.

A. Stability of wave spectra

In order to study the stability of wave spectra, a stand
linear stability analysis of the von Neumann-Weyl-like equ
tion is performed: we let the distribution functionn(x,k,t)
be expressed in terms of an equilibrium distributionn0(k)
plus a small perturbation,

n~x,k,t !5n0~k!1n1~x,k,t ! ~6!

with n1(x,k,t)!n0(k). After substituting Eq.~6! into Eq.~4!
and linearizing we obtain the following equation for the pe
turbation:

]n1~x,k,t !

]t
12mk

]n1~x,k,t !

]x
14n (

m50

`
~21!m

~2m11!!22m11

3
]2m11^uA~x,t !u2&

]x2m11

]2m11n0~k!

]k2m11
50. ~7!

We then look for solutions of the form

n1~x,k,t !5ñ1~k!ei (Kx2Vt). ~8!

After standard algebra, the following implicit form of th
dispersion relation is obtained~see also, Refs.@24–26#!:
5-2
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11
n

mE n0~k1K/2!2n0~k2K/2!

K~k2V/~2mK !!
dk50, ~9!

wheren0(k) is the homogeneous envelope spectrum. O
the equilibrium solutionn0 is given, Eq.~9! represents the
dispersion for the perturbation.

We now look for an equilibrium solutionn0 for sea sur-
face gravity waves. According to experimental works co
ducted more than 25 years ago~see, for example, Ref.@14#!,
it has been found that the spectrum for the free surface
evationz is well approximated by the JONSWAP spectru
~we give its form in wave-number space using the dispers
relation in infinite water depthv5Agh):

P~k!5
a

2k3
e2(3/2)[k0 /k] 2

gexp[2(Ak2Ak0)2/2d2k0] , ~10!

with a, g, andd constants (d is usually set to 0.07, whilea
and g depend on the state of the ocean!. As a and g are
increased, the wave amplitude and, therefore, the nonlin
ity of the wave train increases.g rules also the spectra
width: for large values ofg the spectrum becomes mo
narrow banded. Since we are interested in the dynam
around the peak of the spectrum, as is done in Ref.@21#, we
consider a second-order Taylor expansion ofP(k) around the
peakk0. It turns out that the spectrum in Ref.~10! reduces to
the following Lorentzian one:

P~k!5
Hs

2

16p

p

p21~k2k0!2
, ~11!

where

p5A 8k0
2d2

24d21 ln~g!
and Hs54Ap

agp

2E3/2k0
3
.

~12!

Hs is the significant wave height calculated as four times
standard deviation of the wave field andp corresponds ex-
actly to the half-width at half-maximum of the spectrum
Note that the spectrum in Eq.~11! or in Eq. ~10! is the
spectrum for the free surfacez and not for the envelopeA.
Nevertheless, it can be shown@19# that for a symmetric spec
trum P(k) of the surface elevation, the spectrum for t
complex envelope is given byn0(k)54P(k1k0), therefore,
a factor of 4 must be taken into account. Solving Eq.~9! with
respect toV, we obtain the following dispersion relation:

V5K~AK2m22Hs
2nm22imp!. ~13!

Positive complex roots of Eq.~13! result in a growing insta-
bility of the perturbation: ifK2,Hs

2n/m, the first term on the
right-hand side is responsible for the MI~note that in the
limit as p→0, the dispersion relation~13! gives the
Benjamin-Feir instability!. The last term on the right-han
side has a stabilizing effect and plays the same role pla
by the Landau damping in plasma physics@29#, i.e., a damp-
ing of the perturbation. There is a competition between
04630
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ponential growth and damping of the perturbation that
pends on the parametersa and g of the Lorenzian~or
JONSWAP! spectrum. Ifp.Im@A1K2/42Hs

2n/(4m)# the
damping dominates the MI, the opposite will occur ifp
,Im@AK2/42Hs

2n/(4m)#. In Fig. 1 we show the margina
stability curve in thea-g plane in the limit ofK→0. Spectra
with higher values ofa and g are more likely to show the
MI. In the following section, we will perform numerica
simulations of the NLS equation in order verify the res
from the dispersion relation~13! and study the effect of the
instability in physical space.

B. Analogy with plasma physics

Let us now present some remarks about the physical
gin of the Landau-type damping predicted above. In plas
physics, this damping, for instance, is caused by reson
interactions between a plasma wave and the electrons
denoting withv the single-particle velocity and withv andk
the frequency and wave number of the electron plasma w
respectively, the Landau theory, based on the Vlasov kin
equation, clearly shows that the decay rate of the wave
ergy is proportional to the first derivative of the equilibriu
distribution functionr0(v) of the electrons. Typically, the
shape ofr0(v) is such thatdr0(v5v/k)/dv,0, which im-
plies that there are more particles withv,v/k ~which gain
energy from the wave! than withv.v/k ~which give energy
to the wave!. This statistical circumstance leads to a n
damping of the plasma wave. This is usually referred as
‘‘weak Landau damping.’’ Additionally, as the thermal dis
persion of the electrons of the plasma becomes neglig
~for example, the equilibrium distribution becomes more a
more sharp!, the Landau damping becomes more and m
weak. In principle, a cold plasma, whose thermal distribut
corresponds to ad-function, does not exhibit the phenom
enon of Landau damping.

On the other hand, we observe that, in the limiting ca
for K!k dispersion relation~9! becomes

11
n

mE dn0 /dk

k2V/~2mK !
dk50, ~14!

FIG. 1. Instability diagram in thea-g plane.a andg are non-
dimensional variables.
5-3
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where we have used the approximation

n0~k1K/2!2n0~k2K/2!

K
'

dn0

dk
.

Given the full similarity between the dispersion relation~14!
and the one found by Landau@29#, the physical origin of the
stabilizing effect predicted in the present paper may be
scribed by using an analogy with the phenomenon of Lan
damping. In fact, the above stabilizing effect can be attr
uted to the ‘‘nonmonochromatic’’ character of the Wign
spectrum of the surface gravity waves. Similar to the st
dard Landau damping, where the electrons interact indivi
ally with a linear plasma wave and statistically produce a
transfer of energy from the wave to the particles, the grav
wave train interacts with the perturbation and produce
transfer of energy between wave numbers which is m
significant aroundk5V/2mK.

Furthermore, it is worth noting that, on the basis of t
above physical interpretation, the stabilizing effects t
come out also from the more general dispersion relation~9!,
may be thought of as an extension, to arbitrary wave nu
bers, of the Landau-type damping of an ensemble of in
herent surface gravity waves. However, this effect is not
analog of the weak Landau damping and cannot be predi
with a Vlasov-like equation. In fact, for arbitraryK, and for
the broad-band spectrum~11!, all the terms of the von
Neumann-Weyl kinetic-like equation~4! contribute to the
dispersion relation~13!.

III. NUMERICAL SIMULATIONS AND DISCUSSION

Numerical simulations of Eq.~1! have been compute
using a standard pseudospectral Fourier method. Initial c
ditions for the free surface elevationz(x,0) have been con
structed as the following random process@31#:

z~x,0!5 (
n51

N

Cncos~knx2fn!, ~15!

wherefn are uniformly distributed random numbers on t
interval (0,2p), and Ci5A2P(ki)Dki , where P(ki) is the
discretized spectrum given in Eq.~11!. The Hilbert transform
is used in order to convert the free surfacez to the complex
envelope variableA of the NLS. The spectrum of the com
plex envelopeA is nothing other than the unperturbed hom
geneous solutionn0(k). The dominant wave number for th
numerical simulation was selected to bek050.1 m21. This
last choice is not restrictive: the parameters that rule the
namics of the spectrum are its width and the steepn
which, oncek0 is fixed, are univocally determined bya
andg.

In order to investigate the effects of the instability, w
have chosen two different initial conditions characterized
values ofa andg such that the dispersion relation~13! pre-
dicts, respectively, instability and stability. We have cons
ered values in thea-g plane that are far away from th
marginal stability curve~see crosses in Fig. 1!. For the un-
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stable case, we have consideredg53.5 anda50.03 and for
the stable one we have takeng51.5 anda50.005

We now start the discussion of the numerical results
showing in Fig. 2 the evolution ofuA(x,t)u in the x-t plane
for the unstable case. How is this instability manifeste
From Fig. 2, we note the presence of a ‘‘coherent structur
i.e., a structure~oblique darker zones in thex-t plane! that
persists in the presence of nonlinear interactions and m
tains statistically its shape and velocity during propagat
~note that periodic boundary conditions are used!. Every ran-
dom realization with the same values ofa and g shows
similar results even though the resulting coherent structu
may have different velocity and amplitude. If nonlinearity
increased, more than one coherent structure may appe
thex-t plane. The nonlinear stage of MI is therefore respo
sible for the formation of such coherent structures in thex-t
plane. Indeed it is possible to show that the NLS equat
has periodic solutions such as breathers or unstable m
@13,32#. These solutions, which are the result of a linear
stability, are nevertheless very robust. Moreover they
grow up to more than three times the initial unperturb
solution and, therefore, have also been addressed as si
models for freak waves@10–13#. In contrast to solitons tha
have constant amplitude in time, these unstable modes
characterized by a continuous exchange of energy among
Fourier modes. The energy is transferred from one mod
another and back again: the process is completely revers
and, therefore, coherent structures persist in physical sp
We stress that these kinds of solutions appear naturally f
initial conditions with random phases. The striking res
here is that even if initial conditions are completely rando
the nonlinear interactions generate a strong correla
among wave numbers resulting in coherent structures
bedded in a random wave field.

We now consider the stable case. We again show
space-time evolution ofuA(x,t)u in Fig. 3. The x-t plane
appears as a random field and there is no evidence of
structure that survives for long periods of time. Numeric

FIG. 2. uA(x,t)u from numerical simulation of the NLS. The
initial condition is characterized by a Lorenzian spectrum withg
53.5 anda50.03. A coherent structure is evident in thex-t plane.
Space and time have been scaled, respectively, withk0 and v0

5Agk0.
5-4
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simulations with initial conditions characterized by the sa
values ofa and g but with different random phases are
accordance with the results just shown and are not here
ported.

We will now answer to the following two natural que
tions: How sharp is the transition region in Fig. 1? How
coherent structures develop from random phase initial c
ditions? We have performed a number of numerical simu
tions with initial conditions characterized by values ofa and
g that are close to the marginal stability curve. In particu
here we report numerical simulations that have been
tained by settingg53 anda50.005, 0.01, 0.0153, and 0.02
Circles in Fig. 1 are located where these last numerical si
lations have been performed. As is clear from the figu
points are selected in order to cross the margial stab
curve: we move accross the stability curve by changing
value of a. In Figs. 4~a!–4~d! we show the evolution of
uA(x,t)u in the x-t plane, respectively, forg53 and a
50.005, 0.01, 0.0153, and 0.02. Figures 4~a! and 4~b! are the
result of the evolution of initial conditions characterized
values ofa and g for which the theory predicts a stab
regime, see Fig. 1. While in Fig. 4~a! there is no clear evi-
dence of a coherent structure, in Fig. 4~b! a darker coheren
region has already developed. We recall that larger valu

FIG. 3. uA(x,t)u from numerical simulation of the NLS. The
initial condition is characterized by a Lorenzian spectrum withg
51.5 anda50.005. The field in thex-t plane appears to be rando
without any evidence of coherent structure. Space and time h
been scaled, respectively, withk0 andv05Agk0.
04630
e

e-

n-
-

,
b-

u-
,
y
e

of

a implies larger waves~the steepness is increased! and,
therefore, an increase in nonlinearity of the initial condition
The effect of nonlinearity is such that the uncorrelated wa
numbers at timet50 sec develop some correlations and a
result coherent structures naturally are formed. As we
creasea, Figs. 4~c! and 4~d!, coherent structures becom
more and more well defined.

From the numerical simulations just shown, it seems t
coherent structures can appear from initial conditions ch
acterized by values ofa and g taken below the margina
stability curve. This result is not so surprising: the margin
stability curve has been recovered via a linear stability ana
sis of the kinetic equation which is the result of a statisti
approach to the NLS equation. However, in the natural lo
time evolution of a nonlinear wave train, perturbations are
general not small. Consequently, perturbations in the sim
tions should evolve according to the governing equatio
Our observation is consistent with some very recent res
obtained by Janssen@22#; he was the first one to point ou
that the broadening of the spectrum in numerical simulati
of the NLS and Zakharov equation starts for values of
steepness and spectral width that are lower with respec
the one predicted by the nonhomgeneous theory~see also
Ref. @23#!. In order to explain this result, he has proposed
modification of the Hasselmann-Zakharov kinetic equat
by taking into account also nonresonant interactions@22#.

IV. CONCLUSIONS AND REMARKS

In this paper, we have studied the stability of rando
wave spectra for surface gravity waves in (111) dimension.
Theoretical results from a Wigner approach on the N
equation are compared with direct numerical simulations
the NLS equation. One interesting result of this study co
cerns the effect of the instability in physical space: numeri
simulations show that, starting with a random wave fie
coherent structures naturally develop as long as the in
conditions have sufficient energetics~large a) and are nar-
row banded~large g). The theory developed by using th
Wigner-Moyal transform allows one to isolate the region
the a-g plane where those structure are more likely to a
pear. The transition region predicted by the theory does
appear to be sharp. Coherent structures appear for value
a andg lower than predicted by the theory. Our numeric
simulations are in one space dimension and moreover
spectrum that we have used in the theory and numer
simulations is a narrow-banded approximation of t

ve
FIG. 4. uA(x,t)u from numerical simulation of the NLS. The initial condition is characterized by a Lorenzian spectrum withg53 and
a50.005~a!, 0.01 ~b!, 0.0153~c!, and 0.02~d!. Space and time have been scaled, respectively, withk0 andv05Agk0.
5-5
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JONSWAP spectrum. Needless to say, the theory canno
taken as quantitative. Nevertheless, the marginal stab
curve could give a first qualitative indication of unstab
spectra in realistic conditions in infinite water depth~values
of a and g here considered are typical of ocean wave!.
Many physical questions remain open. For example, it wo
be interesting to investigate the case of a two-dimensio
wave field. It is well known that the NLS in (211) dimen-
sion is not integrable and the dynamics of coherent struct
is still far from being understood. Numerical simulatio
,
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with the fully nonlinear Euler equations are also under co
sideration in order to extend the validity of these results.

ACKNOWLEDGMENTS

We would like to thank P. Janssen, K. Dysthe, and
Trulsen for valuable discussions. M.O. was supported b
research contract from the Universita` di Torino. This work
was financially supported by the Office of Naval Researc
r. A

t-

ical
,

.

el.

n,
A
hys-

M.

.

p.

e
li

r.
@1# M.J. Lightill, J. Inst. Math. Appl.1, 269 ~1965!; Proc. R. Soc.
London, Ser. A299, 1456~1967!.

@2# K. Nishikawa, J. Phys. Soc. Jpn.24, 916 ~1968!; 24, 1152
~1968!; A.A. Vedenov and L.I. Rudakov, Sov. Phys. Dokl.9,
1073 ~1965!; A.A. Vedenov, A.V. Gordeev, and L.I. Rudakov
Plasma Phys.9, 719 ~1967!; B. Kadomsev,Phénoménes Col-
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